
NEKBONE KERNEL: A Single Core
Kernel

Nekbone Kernel Release 2.0

April 11, 2013

1

Nekbone kernel is the single core kernel that exposes the main com-Introduction to
Nekbone kernel putational component of the mini-application, nekbone.

This kernel executes
A× u = w
over a number of 3-dimensional elements by performing a series of
matrix-matrix product evaluations.

More information about the nekbone kernel and nekbone can be
found on the CESAR website:
cesar.mcs.anl.gov/content/software/thermal hydraulics
or by contacting one of the developers.

Paul Fischer : fischer@mcs.anl.gov

Katherine Heisey: heisey@mcs.anl.gov

This document contains the quick start guide followed by a more
detailed explanation on modifying the nekbone kernel.

To run the kernel be sure to download the most recent version fromRunning the Kernel
cesar.mcs.anl.gov/content/software/thermal hydraulics .

You must untar the nek kernel-2.0.tgz, creating a kernel directory.
tar -zxvf nek kernel-2.0.tgz .

This will create a nek kernel-2.0directory with a test/ and src/

subdirectories. The src/ directory contains the source code used
to run a test. The test directory is where all tests should be ran.
cd nek kernel-2.0/test/

A test is decribed by the SIZE file found in nek kernel-2.0/test/.
This file defines the polynomial order of the A matrix with parame-
ters lx1, ly1, lz1. lx1, ly1, lz1 are the number of points in the x, y, z
direction, respectfully, making the polynomial order of a simulation
lx1 − 1. Thus, this is the complexity of the matrix-matrix product
calculations done within the kernel. lx1, ly1, lz1 should all be equal
for the 3-dimensional kernel calculation.

The SIZE file also defines the number of elements in the test case
by the parameter, lelt. The higher lelt or lx1 is, the more compu-
tationally intense the test is.

To compile and link the code use the makenek script. The makenek
script runs several checks on test environment and parameters be-
fore the source code is compiled and linked. It can all be done in
one step:
./makenek

2 Chapter 0 —

To run the kernel test:
./nekkernel

./makenek clean will clean up the test directory, removing the .oClean-up
files and the executable previously compiled. This will allow for a
clean, recompile at the next make command.

The initialization time and the time spent in the ax() subroutineOutput
are printed to stdout.

The makenek script provided in nek kernel-2.0/test/ allows themakenek
user to set compiler flags. Some of the commonly modified variables
are explained below:

One of the important variables that is defined in the script is the
source directory path, SOURCE ROOT=. This should be set to the
path to the source code. Since the tests are all ran from their own
directory, this path can be locally defined as
../src

or more globally as the path from the user’s HOME/ directory. As
default, the path is set to
$HOME/nek kernel-2.0/src

which assumes that the tarball was downloaded and unzipped in
the HOME/ directory.

F77 is the compiler to be used. Nek kernel has been tested with
GNU’s gfortran, PGI Portland, and INTEL serial compilers.

The G variable is for any compiler flags the user wants to include. A
common setting is compiling with debugging turned on by setting
G = ”-g”. For PGI Portland serial compilers, adding -Ktrap=fp
will cause the test to exit when encountering any NaN values.

General optimization flags can be specified by setting the
OPT FLAGS STD variable as desired. This will set the optimiza-
tion level for a majority of the source files. If this is not specified,
the code is compiled with −O2 and with −O0 when in debugging
mode.

OPT FLAGS MAG is used to set the highest level of optimization,
which is used on some of the of the more intricate files. If this
variable is undefined, these files with be compiled with −O3 and
−O0 when in debugging mode.

The initialization phase consists of:Initialization

• Finding the GLL points and weights

• Filling the u vector to be a random input vector

3

• Setting up the geometric factors used in the ax() subroutine

This is a kernel of the nekbone mini-application. It is the main com-Note
ponent found in the mini-application, nekbone, and should only be
ran on a single node. There is no communication, so no C compiler
or MPI implementation is needed.

Nekbone and information regarding it can be found on the CESAR
website:
www.cesar.mcs.anl.gov/content/software/thermal hydraulics/

